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INTRODUCTION 
 
Many sophisticated mathematical models have been developed in recent years that 
provide accurate three-dimensional estimates of energy flux and flooding that can be 
caused by a passing hurricane. All numerical models, regardless of sophistication of 
methodology must use the Bathystrophic Storm Tide Theory to estimate the rise of 
water on the open coast taking into account the combined effects of direct onshore and 
along shore wind-stress components of the strom on the surface of the water, and the 
effects of the Coriolis force (bathystrophic effect), and the different pressure effects. 

Mathematical models using the Bathystrophic Storm Tide Theory can be quasi-one-
dimensional, two dimensional, or three-dimensional numerical schemes. The simplest, 
which is described here, is a quasi-one-dimensional model which is a steady-state 
integration of the wind stresses of the hurricane winds on the surface of the water from 
the edge of the Continental Shelf to the shore, taking into consideration some of the 
effects of bottom friction and the along shore flow caused by the earth's rotation. 

The bathystrophic contribution to hurricane surge can be explained as follows: In the 
northern hemisphere hurricane winds approaching the coast have a counterclockwise 
motion. Because of the Coriolis effect, the flow of water induced by the cyclonic winds 
will deflect to the right, causing a rise in the water level. The bathystrophic storm tide, 
therefore, is important in producing maximum surge even when winds blow parallel to 
the coast. Coastal morphology may also affect the extent of rise of water. However, in 
this model the surge is calculated only along a single traverse line at a time over the 
Continental Shelf for a straight open-ocean coast. Thus, it is labeled as quasi-one-
dimensional. 

The numerical model approach summarized here, is based on the Bathystrophic Storm 
Tide Theory and used to estimate the rise of water on the open coast by taking into 
account the combined effects of direct onshore and along shore wind-stress 
components on the water surface and the effects of the Coriolis force. Such a simple 
model uses the onshore and along shore wind-stress components of a moving wind 
field over the Continental Shelf, and a frictional component of bottom stress. The 
nonlinear storm surge is computed at selected points along the traverse by integrating 
numerically the one-dimensional hydrodynamic equations of motion and continuity. 



The hurricane surge estimated by this simple model is a composite of water elevation 
obtained from components of the astronomical tide, the atmospheric pressure, the initial 
rise, the rises due to wind and bottom friction stresses, and wave setup.  

Obviously such a basic model has its limitations. A hurricane is not stationary, and as it 
moves towards the coast, the wind speeds may increase and wind vectors will change 
direction changing frictional effects on the water surface. Such changes cannot always 
be predicted with accuracy to introduce them into the model. 
 
The prediction of storm surge resulting from the combined meteorologic, oceanic, and 
astronomic effects coincident with the arrival of a hurricane at the coast is important in 
warning the public and in the planning and the design of important coastal structures. 
Increasing requirements for large coastal installations, have required conservative 
criteria in obtaining estimates of potential storm surges from hurricanes. 

The bathystrophic theory on which hurricane surge prediction is based, represents an 
approximation to the complete storm-generation process. Therefore, such a model of 
prediction is limited by a number of initial conditions and assumptions. In most 
instances, the bathystrophic approximation appears to give a reasonable estimate of the 
open-coast surge; however, at times the surge estimate can be in error by a factor of 2 
or more. However, the accuracy of hurricane prediction can be improved through 
calibration with known historical data - something which was accomplished successfully 
by the author more than 25 years ago.  
 
More recently developed numerical models using a three dimensional approach, faster 
and more efficient computers and more accurate weather data from satellites, have 
greater potential for more accurate prediction. However, the fundamental principles in 
the prediction of hurricane surge described here, remain essentially the same. 
 
Copies of the entire report on the verification of this model are available from: 
 

National Technical Information Seroice 
ATTN: Operations Division 

5285 Port Royal Road 
Springfield, Virginia 22151 

 
 
 
 
 
 
 
 
 



model can be described as a quasi-one-dimensional numerical scheme, which is a

THYSTROPHIC STORM SURGE MODEL

The numerican thyst

 

rophic Storm Tide Theory

and is used to estimate the rise of water on the open coast taking into account the combined

effects of direct onshore and alongshore wind-stress components on the surface of the

water, and the effects of the Coriolis force (bathystrophic effect), and the different pressureeffects. This

steady-state integration of the wind stresses of the hurricane winds on the surface of the

water from the edge of the Continental Shelf to the shore, taking in~o consideration some of

"
the effects of bottom friction and the alongshore flow caused by the earth's rotation. The

bathystrophic contribution to hurricane surge, can be explained as follows: In the northern

hemisphere hurricane winds approaching the coast have a counterclockwise motion. Because

of the Coriolis effect, the flow of water induced by the cyclonic winds will deflect to the

right, causing a rise in the water leveL The bathystrophic storm tide, therefore, is important

in producing maximum surge even when winds blow parallel to the coast. Coastal

morphology may also affect the extent of rise of water. However, in this model the surge is

calculated only along a single traverse line at a time over the Continental Shelf for a straight

open-ocean coast.

The model uses the onshore and alongsh"ore wind-stress components of a moving wind

field over the Continental Shelf, and a frictional component of bo~tom stress. The nonlinear

storm surge is computed at selected points along the traverse by i;'tegrating numerically the

one-dimensional hydrodynamic equations of motion and continuity.

The computed surge is a composite of water elevation obtained from components of the

astronomical tide, the atmospheric pressure, the initial rise, the rises due to wind and

bottom friction stresses, and wave setup.

1. Basic Assumptions, Conditions, and Limitations.

The bathystrophic theory,on which this model is based, represents an approximation to

the complete storm-generation process. Therefore, the model is limited by a number of

initial conditions and assumptions. In most instances, the bathystrophic approximation

appears to give a reasonable estimate of the open-coast surge; however, at times the surge

estimate could be in error by a factor of 2 or more. The basic equations which govern the

generation of storm surge will not be derived here, but to understand the bathystrophic

approximation and its limitations, it is important to emphasize the assumptions, initial

conditions, and the hydrodynamic processes neglected in development.

The following initial conditions are placed on the basic equations which govern storm

surge generation (Bodine, 1971):

a. The hurricane creates a disturbance on the ocean surface of such horizontal

dimensions so that L >> D and L << RE , where L is the length of the disturbance; D is



the depth of the water (at the edge of the Continental Shelf), and RE is the radius of the
earth. It is also assumed that:

(1) The space derivativ~s of the current velocity and acceleration can be neglected.

Thus, the vertical pressure gradient is hydrostatic, and vertical accelerations are negligible.

(2) The curvature of the earth can be neglected and a flat earth approximation can be

used.

h. The acceleration due to the earth's rotation is a constant.

c. Water density p is a constant, and internal forces due to viscosity can be neglected.

d. The seabed is fixed, impermeable, and forms the lower boundary.

e. Surface storm waves are linearly superimposed on storm surge. A basic assumption of

the model" is that the surge involves only horizontal fluid motions. In respect to wave

theory, such horizontal fluid motions are often referred to as long waves. The water motion

associated with the propagation of long waves is in a continuous state of gradual change.

2. Hydrodynamic Equations.

Integrations of the primary hydrodynamic equations describing the storm surge problem

have been shown by Haurwitz (1951), Welander (1961), Fortak (1962), Platzman (1963),

Reid (1964), and Harris (1967). These derivations show the actual approximations involved.

In the bathystrophic model by Bodine (1971), the basic equations are the simplified and

vertically integrate~, equations of continuity expressing conservation of mass and motion,

according to Newton's second law.. The equations were taken directly from Bodine in

integrated form for the purpose of illustrating the principal approximations of the

bathystrophic model.

The governing two-dimensional hydrodynamic equations in a volume-transport form,

appropriate for tropical or extratropical stofm surge problems on the open coast and in

enclosed Of semienclosed basins, are as follows:

(3)
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where Mxx ' Myy ' Mxy ' U, and V are given by:

S S S

Mxx - f u2 dz; Myy - f v2 dz; Mxy - f uvdz,

-d -d -d

S S

U - f udz; V - f vdz.

-d -d

where,

U,V - x and y components, respectively, of volume transport

per unit width,

t - time,

angle of wind measured counterclockwise from the x-axis.

Mxx ' Myy ' Mxy - momentum transport quantities,

f - 2w sin ~ = Coriolis parameter,

an~lar velocity of earth = 211'124 radians per hour

(7.29 X lOs radians per second), , .,

geographical latitude ,

x and y components of surface wind stress,

x and y components of bottom stress,

mass density of water,

x and y components of windspeed,

at,Jrlospheric pressure deficit in head of water,

astronomical tide potential in head of water, ..

x and y components, respectively. of current velocity,

precipitation rate (depth/time),

setup of water surface above SWL,

gravitational acceleration,

depth of water at edge of Continental Shelf.

depth of water on the Continental Shelf,

w -

~ -

Tsx' Tsy -

Tbx,Tby -
p -

Wx ' Wy -

~
~

r -

U,v -

p -

S -

g -
D -

d -

and

8 -
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Equations (3) and (4) are the equations of motion, while equation (5) is the continuity

relation for a fluid of constant density. These basic equations provide a complete

description of nearly all horizontal water motions resulting from hurricane surge. An exact

solution of these equations would be very desirable for solving the surge problem; however,

it is difficult to obtain. The model described here obtains only a useful approximation by

ignoring some terms in the basic equations. Accurate solutions can only be acquired by

retaining the full two-dimensional characteristics of the surge problem.

3. The Bathystrophic Model Approximation.

Application of the Bathystrophic Storm Tide Theory of Freeman, Baer, and lung (1957)

to the hydrodynamic equations of motion and continuity for the solution of the surge

problem requires a number of assumptions. According to Bodine (1971) these assumptions

imply that: (a) there is no volume transport nonnal to th~ shore, (b) the onshore wind setup

responds instantaneously to the onshore wind stress, (c) advection of momentum (field

acceleration) is negligible, (d) the alongshore sea surface height is uniform, and (e)

precipitation can be neglected. When applied to the terms of the equations of motion and

continuity (1), (2), and (3), according to Bodine these assumptions have the following

physical significance:

3U au Tbxat' fU, ax' p + 0, (no onshore water volume transport),

Mxx ' Myy ' Mxy + 0, (the advection of momentum can be neglected),

as av
- + ° (the alongshore sea surface and current are uniform),

ay' ay ,

P -+ 0, (the precipitation can be neglected),

a~ +. (The baro~etric effects are neglected in this approxi-

ay mation, but are accounted for elsewhere. These

effects are discussed later.)

at
ax'

at -+ (The astronomical tide effects are neglected in this

ay approximation but are accounted for in the final

estimate of the surge on the coast. These effects

are discusse.d later.)
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Based on these assumptions, the motion equations (3) and (4), reduce to the following

approximations:

as Tsx
gD - - fV +ax p

av Tsy -Tby
- -at p

(6)

(7)

The mass-continuity equation (5) is disregarded in the bathystrophic approximation
because the assumptions make it unnecessary for a unique solution, and of no interest, for
each term has been set equal to zero. The reduced equations (6) and (7) are now
quasi-two-dimensional, since their solution can be obtained only along a single axis, the
x-axis; however, the y-axis bathystrophic component of transport is retained and can be
accounted for. The forces and responses for the bathystrophic approximation are shown in
Figure 1. The weakness of the bathystrophic surge model lies on the numerous
approximations outlined here. A reduction in the number of these approximations and the
solution of the hydrodynamic equations in a more complete form may result in better
estimates of storm surges.

4. Wind and Bottom Frictional Stresses.

Equations (6) and (7) include the x- and y-components of win<l stress on the surface of

the water, Tsx and Tsy ' and the y component of bottom stress due to the water

motion, Tby. These are frictional stresses which need to be quantified for the solution of

the surge problem. Formulas derived from theoretical solutions and physical experiments

have been introduced which provide reasonable values of frictional forces at the bottom and

water surface boundaries. However, these stress values have not been verified for the entire

spectrum of conditions encountered in nature. Furthermore, the surface wind stresses and

the bottom stresses must be ',~coupled" for the numerical computation of hurricane surge

described in this report. Although surface and bottom stresses can be obtain~d .,individually

from empirical experiments, the combined interaction of these stress factors does not obey

a linear relationship. Friction models which take into account the interaction of surface

wind and bottom friction stresses have been proposed by Reid (1957), Platzman (1963),

and Jelesnianski (1967, 1970). These proposals, however, fail to describe the interactions of

stresses in shallow water near the shore. Similarly, extrapolation of the surface wind stress

relationship, as determined from lower windspeeds, to extreme wind conditions may not be

realistic, as there may be interaction of other unknown or unmeasurable variables.

Nonetheless, reasonable estimates of boundary stresses can be obtained if simplified stress

laws are used, and the influence of vertical velocity distribution is neglected. Assuming

horizontally uniform flows of wind and w~ter at the water surface and seabed boundaries,
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NOTE: Various scoles have been 
distorted	 to qive a clearer 

pictoria I	 representation. 

LEGEND: 

$WL : Stillwoter Level 

ST :: Total Setup at Shore 

, S :: Setup 
~ 

d :: depth below SWL


D :: Total depth


Tsx ' Tsy=x,y components of wind stress


V : y-component of water transport 

unit width (of x I


W :: Windspeed


Wx ' Wy :: X, y components of windspeed 

L by :: y-component of bottom stress 

f = Coriolis parameter


P :: density of water


= gravity


t :: time


9 

Figure 1.	 Schematic of forces and responses for hathystrophic approximation (D. S. Army, Corps of Engineers, 
Coastal Engineering Research Center, 1973). 



respectively, similar formulas can be adopted for representing the wind and bottom friction
stresses. Considering these flows, the mean shear stress at the boundary, T relates to the
mean velocity gradient v as follows:

where p is the water density, and 'Y is a dimensionless resistance coefficient. To retain the
proper sign consistent with the coordinate system used, the above equation can be written
as follows:

T = 'Ypvlv/ • (8)

Accordingly, the shear stress at the bottom (Tby) divided by water density, consistent with

the stress term required for equation (7), is:

Tby
- = Kvlvl,
p

(9)

where the bed friction coefficient K, and the y-component of the water velocity, v,

replace 'Y and vrespectively, in equation (8). The bed friction coefficient K, as presented

here, is dimensionless in accordance to the. Prandtl-von Karman Boundary-Layer Theory

(Prandtl, 1935; von Karman, 1930). In the bathystrophic model used in this study (Bodine,

"1971), the Prandtl-von Karman Boundary-Layer Theory was chosen because of the

simplicity in computation. In transport form, equation (9) is given by Bodine as:

Thy KVIVI
-;; = D2 (bottom shear stress). (10)

For typical sea~ed conditions, the bottom friction coefficient K has been assigned values

ranging from 2 X 10-3 and 5 X 10-3 . K is related to the coefficient of Chezy C and the

Darcy-Weisbach friction factor if as follows:

K-

The wind-induced water surface stress, in accordance with equation (8), is given'by:

2
Ts = pkW = pkWIWI, (11)

where W is the wind velocity as given at standard anemometer level (30 feet above the

wave surface, based on IO-minute averages), and'k is a dimensionless surface friction

coefficient. The square of the wind velocity is given as an absolute term WIWI rather

23



than W2 to retain the proper sign consistent with the coordinate system used. According to
a relationship worked out by Van Dom (1953), the wind-stress coefficient is a function of

the windspeed given by:

k = K+ K(1- W
e )2 for W ;:;;;.. W

1 2 We' (12)

where the constants K
1

and K
2

were derived empirically by Van Dom to be 1.1 X 10-6

and 2.5 X 10-6 respectively, and We is a critical windspeed taken as 14 knots (about 16
miles per hour). When W ~ We' equation (12), reduces to:

(13)

On the baSIS of equation (11), the x- and y-components of wind shear stress can be written
as:

p

T

sy = kW2 sin 8,
p

(wind shear stress) (14)

where () is the angle between the x-axis and the local wind vector.
Equations (11) through (14) can now. be introduced into the reduced equations of

motion of the bathystrophic approximation; equations (6) and (7), can now be written as
follows:

as
-=ax 1.- [fV + kW2 cos ()],

gD
(IS)

(16)

-
These equations are simplified forms of the hydrodynamic equations which are applied to
the estimation of storm surge. The solution of these equations by numerical integration is
given later in this report.
5. Numerical Solution of the Surge Problem.

A discussion of the numerical scheme for computing bathystrophic storm surge is given
by Bodine (1971). The basic concepts are detailed here to show the geometry of the
finite-difference numerical method and solution of the numerical equations of setup and
flux.

Equations (15) and (16) giving setup and flux, respectively, can be solved in finite
increments of time and space, assuming the functional relationships of the bathystrophic



equations as continuous over the entire computing interval. The two-dimensional finite step

method of the numerical scheme is illustrated in Figures 2 and 3 for discrete increments of

space, (.6.x )' and time (.6.t ) along a single Cartesian axis, the computational plane
l .n·.

represented by the traverse. For con.venience, the seabed slope AB is shown to be uniform

(Fig. 3). Point C represents position of the edge of the Continental Shelf or the most

seaward point along the traverse, above point A. The line CB represents the equilibrium

condition of the sea surface before being affected by the approaching hurricane winds. The

line CD represents the sea surface altered by the cumulative effects of the winds,

astronomical tide, initial rise, pressure differences and storm waves. A detailed explanation

of the variables contributing to storm surge onpth~ shore is discussed later. The cumulative

water elevation (5) associated with. the hurricane is DB, while point B represents the shore

intercept of the traverse.

For convenience, a boundary condition is placed on the model at point B where the

shoreline is represented by a vertical wall and surge is calculated at a one-half step increment

in front of this wall. The model treats the final water elevation as a static condition, and the

shoreline as a vertical impermeable boundary. However, in reality, the shore is a sloping

surface and dynamic processes and momentum forces associated with water transport and

storm waves may result in greater surge elevati~n along the coast.

An initial assumption of the numerical system is that, at the beginning of the calculation,

when t = to' the system is in an equilibrium state, with a uniform water surface, and no

currents. This implies that the water flux, V, is zero at t = to and that S has a constant

value for the system. Although in reality the system does not exist in a state of complete

equilibrium, it is a reasonable assumption for the calculation. Later, this assumption is of

little consequence, since the response of the system reflects only the effects of the

input-forcing functions.

The discrete position x along the traverse line at any time level, t, is defined as:

and the time level t is given by:

1M
x = Xo -.}; (tJ.X)i'

1= 1

NM
t = t + }; (.6.t)n'

o n=l

. ,

(17)

(18)

where Xo as shown in Figure 3, is the distance from the shore intercept of the traverse to

the most seaward point of the traverse. The summation of .6.x is for all i intervals up to

and including 1M, so that at the shore x = xo ' Although x, according to the coordinate

system shown here, would he negative, changing the sign of x to a positive value does not
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1--- Tsx (t)
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Figure 2. The response of sea level S1 /:).X /:).y due to a step function in the wind stress Tsx
acting over a unit area /:).X fj.y.
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Figure 3. Numerical solution by summation of step functions.



change the computational method. The time scale at the beginning of the calculation at the

seaward point of the computational line is to and the time level is the summation

of fj,t for all n's up to, and including a specified value n = NM.

From the chosen geometry of the present numerical scheme, the values of wind

stress Ts ' seabed depths below the undisturbed level d, and the Coriolis effects are

supplied at all discrete positions of i. The setup S, the total water depth at each

increment, and the value of volume transport V, are evaluated at intervals, i + %.

The total water depth (D7;~) midway between two time levels nand n + 1 IS

centered between the points Xi and xi+l' and the cumulative water depth is given by:

~ + ~+1
Sn + Sn+l

n+~ ~ it
(Sx+Sy)~+~Di+~ - + Se + +

2 2

1
(RSfj,P)i (SD,p)i+ 1r + [(SLip)i + (Sfj,P)i+ lr + 1), (19)+ - +

4

where

Se - initial rise in the water level at the time the storm
surge computations are started,

SA = 'setup due to astronomical tide,

Slip - atmospheric pressure setup in feet, given by:

which is an approximate relationship when pressure is expressed in inches of mercury and

where Pn is the pressure at the periphery of the storm, and r is the radial distance from

the storm center to the computation point on the traverse line and Sx and Sy are the

components of the storm setup given by:

L
j= 1

(20)

(21)

The physical significance of equations (20) and 21) is that total wind setup for any

discrete position along the traverse is the setup in that reach superimposed cumulatively on

the setups in all reaches seaward.
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For a new time level, n + I, the total water depth is given by:

(22)

From Figure 3 and equations (19) and (22) it is apparent that a small error is introduced
each time D is calculated because the term (Sx + Sy) is taken at the previous time level
rather than at time (n + ~) for equation (19) and (n + I) for equation (22). The reason
is that the correct values are not known for these time intervals; therefore, an
approximation is made. This error, however, is minimized by using small increments of time
and space in the calculations.

The differential hydrodynamic equations (15) and (16) can now be solved by numerical
integration. Equation (15) gives the cumulative setup resulting from onshore and alongshore
effects. The onshore, wind-induced component, according to Bodine (1971) can be
separated from the aiongshore bathystrophic component and equation (15) can be written
in its equivalent forms as follows:

asx kW2 cos (J
(23)- -

ax gD

asy fV ,

-= - (24)
ax gD

where the total setup along the x-axis is the sum of the two, given by

as

ax

asx asy
--+-

ax ax·

Numerical integration of equations (23) and (24) will give the following numerical
analogs (Bodine, 1971):

( )
n+ 1

~x i+~ = n+l
2gDi+~

( )
n +1

Ai + Ai+1 ' (25)

(26)

where A is a Kinematic form of wind stress given by:

A = kW2 cos 0.
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Similarly, the alongshore differential equation (16) of water flux can be resolved by 

numerical integration as: 

av 2 KV
2 

-at = kW sin () - --n2 . , 

or 

av 
= kW2 sin () - KVIVID- 2 

• at 

However, . 

(27) 

The first term of equation (16), kW2 sin () can be made equal to B, which is also a 

Kinematic form of the wind stress, so that, 

" 

The second term of equation (16) can be approximated as follows: 

2KVIVID - '" 11+.1 IVn I(D-2) n+U (29)- KVj+U i+U i+U • 

Substituting equations (27), (28), and (29) into equation (16), yields: 

n +1 I n I( -2) n + U- KVi +U Vi+U D i+U· (30) 

Multiplying equation (30) by A and transposing the term V~ lL yields:t l+,2 

(31)




transposing the term

yields:

Factoring out the term V~:4and dividing equation (32) by the term

becomes:

Vn +1
i+!1l

= (~) [(Bi + B;+1)" + (Bi + Bi +1).+1] I'.t +

1 + K IV?+!1l1 ~t (0-
2

) 7:: (33)

which is the numerical analog of equation (16).
In the numerical analogs of the bathystrophic equations, nonuniform spacing 6.x and

time, ~t, steps can be taken. This permits coarse spacing, fu., where the seabed is
relatively flat, and fine spacing near the shore where the bed slope changes rapidly.
Similarly, nonuniform time steps, ~t, permit more frequent storm-surge computations
during the.period when rapid water level changes are anticipated.

Based on this numerical scheme and logic, calculations of surge are started at the seaward
boundary to the shore-intercept through all prescribed spatial positions on the traverse at
the initial time level. The process is repeated for each prescribed time level, and continued
for the entire temporal range. For each discrete position along the traverse line, the
flux V, at each new time level, is evaluated based on the flux V at the prf;.vi~us time level.
Similarly the stress term B, and depth D, are evaluated as the average values in the
incremental domain of (x + ~) and (t + ~t). Determination of V at each new time

level can be made with equation (33), then using this value, determination of the x- and

y-components of setup, ~Sr and b.Sy ' can be made with equation (25) and (26), to

obtain the total setups Sr and Sy.
As mentioned earlier, the total water level rise on the shore will be the summation of a

number of components from the meteorological storm plus those unrelated to the storm.

The total setup is given by:

(34)
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Definitions of most components have been given. Some other components are related to the

storm hut some unrelated terms are provided as input to the surge computation. In equation

(34), Sw is the wave setup at the shore due to breaking waves given (U.S. Army, Corps of

Engineers, Coastal Engineering Research Center, 1973):

(35)

where Hb is the height of the breaking wave, g is the gravitational acceleration, and T is

the wave pe~iod. The local setup or setdown SL' is the deviation of the water surface from
the computed water level due to such local effects as inland runoff inside the coastal barrier

or the coastal hydrography. This component can only be estimated from full consideration

of the influences of topography and hydrography not considered in the numerical

computations. A schematic representation of the different setup components contributing

to storm surge on the shore is shown in Figure 4.

Calculation of volume transport Y, is based on repeated computations using the same

formula, and can result in round-off errors, as each computed value will influence the values

which remain to be determined. To ensure that the value of Y does not exceed the

maximum possible ,value, Bodine (1971) derived the following relationship. In an

incremental form, equation (16) can he written as:

D.Y = kW2 sin 0 D.t - Ky2 D-2 D.t,

or

Ky2 D-2
~t = kW2 sin 0 D.t - D.Y .

For small

2 -2 2D.Y,KVD ~kW sinO.

Thus, the y-component of volume transport becomes

v .;; JD2kW~ sin 8 ' .

At the new time level, the $ove equation can he written in its numerical analog form, as:

I(Bi + Bi+1r +1/ (D 2
) ?++~

2K
(36)
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Figure 4. Various setup components over the Continental Shelf contributing to
storm surge on the shore (Bodine, 1971).
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According to this equation the absolute value of the flux must never exceed the term on

the right-hand side. This relation is used as a check, and if this value is exceeded, the flux at

the new time level, as an estimate, can be set equal to the value given by the right-hand side

of equation (36). The integrated equations (25), (26), (33) and (36) can be used for the

numerical solution of the surge problem. However, because of the inconsistency of units in

the different terms used in these equations, it is desirable to absorb the invariant coefficients

of these terms and substitute with constants. Such substitution reduces the possibility of

errors and the equations are easier to use in the program. For example, weather charts

usually present the wind data in knots. Distances taken from hydrographic maps are given ~p.

nautical. mile~, and depths in fathoms or feet. To eliminate conversion of units, Table I gives

the dimensions of the variables used in the numerical scheme in four sYstems of units and
.I

the corresponding value of the constants for each system. The first column of units is given

in the metric system while the other three are given in mixed units of the English system.

Table I. Systems of Units for Storm Surge Computations

Units and Constant Values
Parameters

Metric Mixed English

tlx
,

km nm nm mt

tlSx ' ~y m ft ft ft

g m/sec2 ft/sec 2 ft/sec 2 ft/sec 2

D m ft ft ft

A,B (km/hr)2 (nm/hr)2 (mi/hr)2 (mi/hr)2

V km2/hr nm2/hr mi2 /hr mi2/hr

f hr- I hr- 1 hr- 1 hr- 1

tlt hr hr hr hr

C
1

3.94 269 203 176

C2 2.06 141 106 92

Cg (1,000)2 (6,080)2 (5,280)2 (5,280)2

(U.s. Army, Corps of Engineers, Coastal Engineering Research Center, 1973).
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Equations (25), (26), (33), and (36) can now be given in a more simplified computational 
form, as follows: 
 

 
 
 
The values of the dimensional constants C1, C2 and C3 in equations (37), (38), (39), and 
(40) will depend on the system of units used in performing the computations. In the 
present model, the English system of units is used, so C1=203, C2=106, and C3=(5280)2.  
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